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ABSTRACT 

 
Nowadays, Breaks for Additive Seasonal and Trend (BFAST) method based on time series of Moderate 

Resolution Imaging Spectroradiometer (MODIS) satellite data is increasingly used to monitor the temporal 
dynamics of vegetation changes. Nevertheless, sensitivity of the BFAST method for detecting the vegetation 
cover changes based on the choice of vegetation indices and land cover types has not been widely 
investigated. Breaks for Additive Seasonal and Trend (BFAST) method has applied to MODIS 16-day Enhance 
Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) composites images (2000-2014) of 
three land cover types (Urban and Built-Up, Evergreen Broadleaf Forest and Savannah) within Australia. 
Overall, the number and time of changes detected in the three land cover types differed with both time series 
data because of the data quality due to the cloud cover. As conclusion, the EVI is more sensitive than NDVI for 
detecting the seasonal and abrupt changes for the land cover which has the dense vegetation and large canopy 
background such as evergreen broadleaf forest. Furthermore, NDVI is more reliable to detect the seasonal and 
abrupt changes that occurred in land cover types which have sparse vegetation such as urban, built-up area 
and savannah.  
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ABSTRAK 
 

Saat ini, Metode Breaks for Additive Seasonal and Trend (BFAST) berdasarkan data satelit Moderate 
Resolution Imaging Spectroradiometer (MODIS) telah banyak diaplikasikan untuk melakukan monitoring 
terhadap perubahan dinamis dari tutupan vegetasi. Namun, sensitifitas BFAST untuk mendeteksi perubahan 
vegetasi berdasarkan pilihan indeks vegetasi dan jenis tutupan lahan yang berbeda belum banyak dilakukan. 
Metode Breaks for Additive Seasonal and Trend (BFAST) telah diaplikasikan dengan menggunakan data 
Enhanced Vegetation Index (EVI) dan Normalized Difference Vegetation Index (NDVI) dari satelit MODIS 16-
harian terhadap tiga jenis tutupan lahan (perkotaan dan lahan terbangun, hutan berdaun lebar dan padang 
rumput) di wilayah Australia untuk periode data tahun 2000 - 2014. Secara umum, hasil deteksi metode BFAST 
berbeda untuk setiap tutupan lahan baik dari segi jumlah dan waktu yang dipengaruhi oleh kualitas data karena 
adanya tutupan awan di lokasi penelitian. Dapat disimpulkan bahwa EVI lebih sensitif digunakan dalam 
mendeteksi adanya perubahan musiman dan mendadak pada tutupan lahan dengan vegetasi yang rapat dan 
berkanopi lebar seperti hutan tropis. Sedangkan NDVI lebih sensitif digunakan untuk mendeteksi komponen 
musiman dan perubahan mendadak terutama untuk tutupan lahan yang memiliki vegetasi jarang seperti 
perkotaan, lahan terbangun dan padang rumput. 

 
Kata kunci:  Additive Model, BFAST, EVI, NDVI, MODIS  
 
INTRODUCTION 
 

Ecosystems are in a state of continual change 
driven by anthropogenic and natural forces. Natural 
disturbances can be from fires, insect attacks, 
droughts, whereas anthropogenic disturbances 
results from human activities such as deforestation, 
urbanization and farming (Verbesselt et al, 2010a). 
As such, change in ecosystems can be divided into 

three classes: (1) seasonal change which triggered 
by annual temperature and rainfall variation which 
impact to the plant phenology or proportional of 
land cover; (2) gradual change such as inter-annual 
climate variability such as trends of mean annual 
rainfall; and (3) abrupt change which affected by 
disturbances such as deforestation, urbanization, 
floods, and fires (Verbeselt et al, 2010; Wilson et al, 
2002). There is now an ever growing interest in 
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information about the condition of ecosystems 
because of potentially devastating phenomenon 
such as global warming, biodiversity loss and 
carbon accumulation in the atmosphere. 

The Vegetation Index (VI) from Moderate 
Resolution Imaging Spectroradiometer (MODIS) 
satellite signifies improved spatial, spectral, and 
radiometric capacity of surface vegetation 
environment (Tucker et al, 2005). The vegetation 
index (VI), defined as “the arithmetic combination of 
two or more bands related to the spectral 
characteristics of vegetation, has been widely used 
for the phenology monitoring, vegetation 
classification, and biophysical derivation of 
radiometric and structural vegetation parameters” 
(Matsushita et al, 2007). The choice of an 
appropriate VI for the purpose of change detection 
remains a challenging task. Some authors have 
reported differing results in change detection from 
the use of more than one vegetation index derived 
for the same land cover. In Indonesia, the 
sensitivity between Enhanced Vegetation Index 
(EVI) and Normalized Difference Vegetation Index 
(NDVI) has investigated for tropical forest in 
Palangkaraya Flux tower is investigated 
(Darmawan and Sofan, 2012). They found that EVI 
is more sensitive than NDVI for detecting the abrupt 
changes which occurred due to forest fire for 
August to October 2014 (Darmawan & Sofan, 
2012). Moreover, Wilson and Sader (2002) found 
the Normalized Difference Moisture Index (NDMI) 
outperformed the widely used NDVI in detecting 
forest harvest in northern Maine forest in the USA 
(Wilson et al, 2002). Sonnenschein et al., (2011) 
reported NDVI to be relatively weaker than the 
Tasselled Cap Greenness in trend analysis of dry 
lands in Greece (Sonnenschein et al, 2011). 

Currently, NDVI is the most frequently applied 
as a global-based vegetation index. NDVI enabled 
to cancel out a mostly proportion of the noise 
caused by shifting sun angles, topography, clouds, 
shadow, and atmospheric conditions (Matsushita et 
al, 2007). However, NDVI still has a risk to large 
sources of error and uncertainty over variable 
atmospheric and canopy background factors 
(Matsushita et al, 2007). The EVI was improved to 
enhance the vegetation signal by reducing 
influences from the atmosphere and canopy 
background and to improve sensitivity in high 
biomass regions (Sjöström et al, 2011). Several 
limitations of the NDVI have opened opportunities 
to use EVI for detecting trend and seasonal 
changes in time series data especially for forest 
vegetation. EVI has a higher sensitivity correlated 
with green leaf area index (LAI) and canopy 
background than NDVI (Dietz et al, 2007). 

Moreover, Enhanced Vegetation Index (EVI) 
was found to be more linearly correlated with green 
Leaf Area Index (LAI) in crop fields, less prone to 
saturation in common and tropical forests and 
minimally responses to residual aerosol (Jiang et al, 
2008). The EVI was improved to reduce soil and 
atmospheric sensitivity observed in the NDVI by 

including the blue band for atmospheric correction 
(Jiang et al, 2008). The EVI is more functional on 
Near Infra-Red (NIR) reflectance than on Red 
absorption, and therefore it does not “saturate" as 
rapidly as NDVI in dense vegetation. The EVI is 
increasingly used in phenological, productivity and 
evapotranspiration (ET) studies (Glenn et al, 2008).  

Furthermore, several different techniques of 
change detection have been improved to extract 
some information from satellite image time series 
(Wallace and Campbell, 1989). Now, the BFAST 
(Breaks for Additive Seasonal and Trend) method 
iteratively predicts the dates and number of 
changes happening inside seasonal and trend 
components (Wallace & Campbell, 1989). The 
BFAST method improved by using a harmonic 
seasonal model which more effectively in number of 
observation, is more stable to reduce effect of 
noise, and of which the parameters is more 
compatible used to describe phenological change 
(Verbesselt et al, 2010b). The BFAST has been 
applied to any time series data and it is not limited 
to NDVI. Nevertheless, comparative studies which 
assess the respond of BFAST method using NDVI 
and EVI in change detection for different land cover 
types is lacking in the literature.   

In this paper, Breaks for Additive Seasonal and 
Trend (BFAST), which is a change detection 
algorithm proposed by Verbesselt et al. (2010), was 
applied to MODIS 16-day NDVI and EVI composite 
images for three land cover types (Verbesselt et al, 
2010a; Verbesselt et al, 2010b). BFAST combines 
the decomposition of time series into trend, 
seasonal, and remainder components with methods 
for detecting change within time series (Verbesselt 
et al, 2010). The specific objective of this paper was 
to explore the use of MODIS satellite data for 
detecting the vegetation changes based on the 
choice of vegetation indices and land cover types. 

 
METHOD 
 
Three flux towers in Australia representing three 
land cover types were selected for the study (Table 
1). Australia has chosen as the study area because 
Australia has more various land cover types than 
Indonesia. Location of flux tower in Australia in 
Figure 1. 

Table 1. Name, location (State), latitude and 
longitude (lat/long, decimal degrees), 
land cover types of the flux tower sites in 
Australia. 

Flux tower  Lat Lon Land cover 

Burdekin Delta -19.57 147.40 
Urban and 

Built-Up 

Cape Tribulation -16.10 145.45 
Evergreen 
Broadleaf 
Forest 

Daly River 
Savannah 

-14.16 131.39 Savannah 
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Figure 1. The map location of flux tower                           
in Australia 

 
Due to the size of the continent, there is not 

one single seasonal calendar for the entire 
continent. Instead there are six climatic zones and 
this translates as two main seasonal patterns such 
as temperate zone and tropical zone (Department 
of the Environment, Australia Government, 2014). 
Sixteenth-day NDVI and EVI composites with 250 
m resolution (MOD13Q1 collection 5) for these sites 
were acquired for the period covering 06th of April 
2000 to 30th of September 2014 (337 images). One 
pixel measuring 250 m x 250 m covering the flux 
tower was selected per land cover type. The binary 
MODIS Quality Assurance flags were used to 
choose cloud-free, optimum quality data. However, 
because the algorithm used to exempt clouds 
employ bands with coarse resolution (Verbesselt et 
al, 2010a). There is no absolute guarantee that the 
quality flags totally isolate cloud-corrupted data for 
the 250 m MODIS pixels. Missing values within the 
NDVI and EVI series were filled by using linear 
interpolation (Verbesselt et al, 2010a).  

A change detection algorithm, Break for 
Additive Trend (BFAST) was used to decompose 
and detect changes within the NDVI and EVI time 
series. BFAST decomposes the time series data by 
iteratively fitting a piecewise linear model to the 
trend component and a harmonic model to the 
seasonal component (Verbesselt et al, 2010a; 
Verbesselt et al, 2010b). Anomalies or significant 
changes in the trend or seasonal components in the 
data will appear as breakpoints after fitting the 
model to the data. The principal advantages of 
BFAST are that it is more generic, independent of 
data type and change trajectory.  

The methods are available in the BFAST 
package for R from CRAN (http://cran.r-
project.org/package=bfast) (Verbesselt et al, 2010a; 
Verbesselt et al, 2010b). The processing data in 
this research divided into five parts. First, the 
BFAST method was applied for the EVI and NDVI 
dataset. Principally, the BFAST method will 
decompose the time series data to the seasonal, 

trend and noise component. Second, the 
phenological and abrupt changes will be analyzed 
for all components. The breaks of seasonal 
component are referring to the number of 
phenology changes. Furthermore, number of the 
abrupt changes is displayed by trend components. 
Fourth, the signal-to-noise ratio (∆c1) can be used 
as the control variable for quality control of BFAST 
result. It will be influenced on the RMSE for 
detecting the number of phenological changes 
(Verbesselt et al, 2010b). This infers that the higher 
seasonal amplitude (a) of the time series or lower 
noise level (σ) results means a more accurate 
detection of the number of phenological changes 
(Verbesselt et al, 2010b). The signal-to-noise ratio 
(∆c1) can be derived by dividing the seasonal 
amplitude (a) from seasonal component with the 
noise level (σ). Finally, evaluation of the sensitivity 
and reliability between the NDVI and EVI time 
series data is the most crucial part in this study. 

Evaluation of sensitivity and reliability of data 
were done with an investigation of the quality of 
data that has been used. This is related to the 
number of data (NA) that may be lost during the 
process of masking and cleaning the noise of the 
data in the BFAST before the interpolation data. 
The high number of the missing data is equal with 
the declining quality of interpolation results. The 
BFAST model was processed by using R 
programming. Analyze has focused on the 
amplitude of the seasonal component, the 
magnitude of the changes in the trend component, 
the signal-to-noise ratio, and the number of gaps of 
missing data (dates without data probably due to 
cloud cover) for every land cover types.  
 
RESULTS  

 
Principally, application of BFAST to the MODIS 

EVI and NDVI time series for the flux tower pixels 
generated estimates of the time, number and type 
of the significant changes. No one site which 
detected change in seasonal, even in the EVI and 
NDVI data (Figure 2-4). Nonetheless, urban and 
built-area in Burdekin Delta site has the highest of 
seasonal amplitude mostly for NDVI datasets 
(Table 2). Moreover, the EVI and NDVI seasonal 
amplitude for the evergreen broadleaf forest in 
Cape Tribulation is below the minimum limit of 0.1 
VI considered adequate for BFAST to capture any 
phenological change in time series (Verbesselt et 
al, 2010a; Verbesselt et al, 2010b). There are also 
discrepancies in the number and time of abrupt 
changes in the trend component from the EVI and 
NDVI data for every site, except in Burdekin Delta 
Site (Figure 2).   

In Burdekin Delta site, there are no abrupt 
changes detected for both of EVI and NDVI data. 
Moreover, BFAST analysis on the EVI and NDVI 
data for the Cape Tribulation site indicated one of 
negative amplitude of abrupt change in trend 
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A B 

Figure 2.  Detected changes (---) in seasonal and trend components (in red) of 16-day EVI (A) and NDVI (B) 
time series (data) extracted from a single pixel of Urban and Built-area in Burdekin Delta Site, Australia, with no 

abrupt change in both of  the EVI and NDVI data. 
 
component which occurred in 6

th
 of March 2011 and 

30
th
 of September 2013 respectively (Figure 4). 

Furthermore, the Daly River Savannah site analysis 
indicated 7 (seven) of changes for the EVI data 
(2001, 2004, 2005, 2006, 2008, 2011 and 2013) 
and 4 (four) for the NDVI data (2001, 2006, 2011, 
2013) which can be seen in trend component 
(Figure 7).  

Ideally, results from a BFAST calculation 
over different of land cover types indicate the 
different wavelet characteristics of each land cover 
type (Figure 2-4). In the seasonal component, 

there are no seasonal changes found in the 
seasonal component for three kinds of land cover 
types.  It is known that BFAST is more sensitive to 
detect the abrupt changes in the trend component 
than the seasonal component change (Verbesselt 
et al, 2010a).  Although it was difficult to interpret 
the differences between each type of land cover 
without validation the observed data, but the 
characteristics for every land cover types were 
perfectly captured by the amplitude of seasonal 
component.  

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 3. Burdekin Delta (Urban & Build up) 
Source: Google earth, 10/2013.
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A B 

Figure 4. Detected changes (---) in the trend components (in red) of 16-day EVI (A) and NDVI (B) time series 
(data) extracted from a single pixel of an Evergreen Broadleaf Forest, Cape Tribulation Site, 

Australia, with one of abrupt change in both of the EVI and NDVI data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Cape Tribulation (Evergreen Forest), Source: Google earth, 

11/2014. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Daly River Savanna, Source: Google earth, 07/2014. 
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Overall, the seasonal amplitude of the MODIS 
NDVI data set was higher than that of the MODIS 
EVI data set for all land cover types (Table 2). 
When using NDVI data, the built-up area has the 
highest seasonal amplitude (Figure 2 & 3). This 
indicates that the NDVI data set captures more 
seasonal variability in phenology of the vegetation 
compared to the EVI data sets (Verbesselt et al, 
2010a; Tsutsumida et al, 2013). Furthermore, urban 
and built-up area has a notably strong cyclic inter-
annual variation with one peak in each year 
(Tsutsumida et al, 2013). This is not surprising, as 
vegetation closer to human settlements are 
generally disturbed (grazing, farming, fire) the most 
in Burdekin Delta site, hence high variation in 
seasonal NDVI. In this case, use of the NDVI time 
series, particularly by BFAST, is able to describe 
land cover changes (Tsutsumida et al, 2013).  

Mostly, the abrupt changes are triggered by 
suddenly disturbances such as deforestation, 
urbanization, floods, and fires (Verbesselt et al, 
2010a). Based on the number of abrupt changes, 
Burdekin Delta site did not show any abrupt 
changes in both of datasets (Figure 2).  Since 
Burdekin Delta site consist of urban and built-up 
area (Figure 3), so that there is no significant 
abrupt changes which occurred in this location.  
Although there is vegetation in urban and built-up, 
but the vegetation grew sparse in some parts and 
not much disturbed by human.  

In Cape Tribulation site, a closer look at the 
signal-to-noise ratio and the missing data indicates 
that the EVI had higher signal-to-noise ratio and 
smaller number of missing data than the NDVI time 
series of this grassland (Table 2).  It would 
therefore appear that the EVI data might truly 
reflect the condition of the Evergreen Broadleaf 
Forest than the NDVI data (Darmawan and Sofan, 
2012; Bhandaria et al, 2011).   

For Daly River Savanna site, it consists of 
Savanna which has more sensitive of vegetation 
changes due to climatic factor and human 
intervention. In this case, NDVI has a lower missing 
data than using EVI and equal value of the signal-
to-noise ratio with EVI datasets (Verbesselt et al, 
2010a).  It can be postulated that NDVI is better to 
detect the seasonal change and abrupt change in 
Savanna.  Based on the results, it appears that EVI 
time series was more effective at capturing the 
changes than the NDVI especially for tropical 
forest. MOD13Q1 NDVI showed higher seasonal 
amplitude, but was less accurate at capturing 
phenology and disturbances compared to the EVI in 
tropical forest.   

Finding from this research is relevant to the 
previous research which has done by Darmawan 
and Parwati (2012).  They found that EVI is more 
powerful to apply in tropical forest of Palangkaraya, 
Indonesia which has similar type of vegetation with 
Evergreen Broadleaf Forest, Australia.  This can be 
happened because EVI formulated by account the 
blue wavelength which can reduce the effect of 
aerosol and canopy background due to the dense 

vegetation (Darmawan and Sofan, 2012).  The EVI 
was less affected by variable viewing and 
illumination geometry in terms of amplitude, but 
was affected in terms of time shift in periodicities 
providing erroneous information on phenology 
(Verbesselt et al, 2010a; Verbesselt et al, 2010a). 

Apart from the seasonal amplitude, it cannot 
be infallibly stated whether the NDVI data was 
better than the EVI data. Though the seasonal 
amplitude of NDVI data was higher than the EVI 
data for all land cover types, the EVI had significant 
lower number of gaps of missing data especially for 
Evergreen Broadleaf Forest (Table 2). Generally, 
the number of missing data for both time series and 
all land cover types is quite low except for 
Evergreen Broadleaf Forest (Table 2). The choice 
of a single pixel (250 m) per land cover type may 
have been insufficient in capturing information of 
the land cover because of cloud contamination of 
the entire pixel. The effect of cloud cover will be 
minimized if averages of the vegetation indices are 
taken over a larger pixel (e.g 3 X 3) for the sites 
(Verbesselt et al, 2010a).  

 
Table 2. Seasonal amplitude (a), Noise level (σ), 

Signal-to-noise ratio (∆c1= a/ σ) and 
number of missing data (DG) of the EVI 
and NDVI time series data of the land 
cover types. 

 
Parameter 

 

Urban and 
Built-up 

Area 

Evergreen 
Broadleaf 

Forest 
Savannah 

 
a 

EVI 0.10 0.03 0.10 

NDVI 0.20 0.02 0.15 

 

  

EVI 0.30 0.30 0.10 
NDVI 0.30 0.10 0.15 

 
∆c1 

EVI 0.33 0.10 1.00 

NDVI 1.5 0.10 1.00 

 
DG 

EVI 26 47 55 
NDVI 24 56 52 

 
CONCLUSIONS 

 
A challenge to change detection studies 

utilizing vegetation indices as a proxy indicator of 
the condition of land cover lies in the identification 
of the best vegetation index that suits a particular 
land cover type. To assess the influence of the 
choice of vegetation indices on the number and 
time of detected seasonal (or phenological) and 
abrupt changes, we applied BFAST, a change 
detection algorithm, to MODIS 16-day NDVI and 
EVI composites images (2000-2014) of three 
locations in Australia. The three land cover types 
(location) are: urban and built-up area, evergreen 
broadleaf forest, and savanna. Overall, the number 
and time of the detected changes in a particular 
land cover type differed in both NDVI and EVI time 
series data. Irrespective of the land cover type and 
the time series, the magnitude of the abrupt 
changes detected was small. The difference in 
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detected of abrupt changes between the EVI and 
NDVI time series for every land cover types may be 
attributed to data quality, as the NDVI data had the 
higher seasonal amplitude and low missing data 
than the EVI especially for the land cover which has 
the sparse vegetation and small canopy (urban and 
built-up area, savanna). In opposition, EVI is better 
to capture the seasonal and abrupt changes for 
land cover which has the dense vegetation and 
large canopy such an Evergreen Broadleaf Forest.   

Commonly, the NDVI had higher seasonal 
amplitude than the EVI time series for all land cover 
type, except for the evergreen broadleaf forest. 
Findings from this research confirm that BFAST is 
effectively applied by EVI and NDVI which depend 
on the land cover types. Because of the very limited 
time available to conduct this study and the dearth 
of field data to corroborate the findings from our 
study, we recommend further research that will 
incorporate field information or ground truth in 
assessing the influence of choice of vegetation 
indices in change detection in different land cover 
types. 
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